Перв. примен.	ДВУК.431433.327-003	Общее описание Микросхемы серии GM5510 (МIК5510) представляет собой высокоточные датчики напряжения с малым потреблением мощности, которые производятся по КМОП-технологии с лазерной подгонкой. Датчик напряжения обладает высокой точностью и минимальным температурным дрейфом. Доступны конфигурации выхода с КМОП и с каналом N-типа с открытым стоком. ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ Высокая точность: ± 2 % Малое потребление мощности: тип. 0,7 мкА (V _{IN} = 1,5 B) Диапазон датчика напряжения: 1,6 B до 6,0 B с шагом 0,1 B Диапазон рабочего напряжения: 0,7 до 10,0 B Температурные характеристики датчика напряжения: тип. ± 100 ррт/ °С
Справ. №		 ◆ Конфигурация выхода: КМОП или канал N-типа с открытым стоком Применение Схемы сброса микропроцессоров Обнаружение падения мощности
		Схемы резервного питания памяти Схемы сброса при включении питания Типовые схемы применения
Подп. и дата		
№ Инв. № дубл.		GM5510C (MIK5510C) Vout Vss
а Взам. инв. №		Выход: КМОП Выход: Канал N-типа с открытым стоком
Подп. и дата		ДВУК.431433.327-003И 1зм. Л ист № докум. Подп. Дата
Инв. № подл.		Микросхемы интегральные серии GM5510 (MIK5510) Инструкция пользователя

Информация для заказа

Номер изделия

GM5510C-1.8ST23RG

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

(MIK5510C-1.8ST23RG)

Конфигурация

выхода

кмоп

GM5510C-2.0ST23RG (MIK5510C-2.0ST23RG)	кмоп	2,0 B	F	SOT-23	3000 шт. / катушка
GM5510C-2.7ST23RG (MIK5510C-2.7ST23RG)	КМОП	2,7 B	Н	SOT-23	3000 шт. / катушка
GM5510C-2.9ST23RG (MIK5510C-2.9ST23RG)	кмоп	2,9 B	K	SOT-23	3000 шт. / катушка
GM5510C-2.93ST23RG (MIK5510C-2.93ST23RG)	кмоп	2,93 B	L	SOT-23	3000 шт. / катушка
GM5510C-3.0ST23RG (MIK5510C-3.0ST23RG)	КМОП	3,0 B	М	SOT-23	3000 шт. / катушка
GM5510C-3.08ST23RG (MIK5510C-3.08ST23RG)	кмоп	3,08 B	N	SOT-23	3000 шт. / катушка
GM5510C-3.3ST23RG (MIK5510C-3.3ST23RG)	КМОП	3,3 B	Р	SOT-23	3000 шт. / катушка
GM5510C-3.6ST23RG (MIK5510C-3.6ST23RG)	КМОП	3,6 B	R	SOT-23	3000 шт. / катушка
GM5510C-4.0ST23RG (MIK5510C-4.0ST23RG)	КМОП	4,0 B	S	SOT-23	3000 шт. / катушка
GM5510C-4.1ST23RG (MIK5510C-4.1ST23RG)	кмоп	4,1 B	Т	SOT-23	3000 шт. / катушка
GM5510C-4.2ST23RG (MIK5510C-4.2ST23RG)	кмоп	4,2 B	U	SOT-23	3000 шт. / катушка
GM5510C-4.5ST23RG (MIK5510C-4.5ST23RG)	кмоп	4,5 B	W	SOT-23	3000 шт. / катушка
GM5510N-1.8ST23RG (MIK5510N-1.8ST23RG)	Канал N-типа с открытым стоком	1,8 B	E	SOT-23	3000 шт. / катушка
GM5510N-2.0ST23RG (MIK5510N-2.0ST23RG)	Канал N-типа с от- крытым стоком	2,0 B	F	SOT-23	3000 шт. / катушка
GM5510N-2.7ST23RG (MIK5510N-2.7ST23RG)	Канал N-типа с от- крытым стоком	2,7 B	Н	SOT-23	3000 шт. / катушка
GM5510N-2.9ST23RG (MIK5510N-2.9ST23RG)	Канал N-типа с от- крытым стоком	2,9 B	K	SOT-23	3000 шт. / катушка
GM5510N-2.93ST23RG (MIK5510N-2.93ST23RG)	Канал N-типа с от- крытым стоком	2,93 B	L	SOT-23	3000 шт. / катушка
GM5510N-3.0ST23RG (MIK5510N-3.0ST23RG)	Канал N-типа с от- крытым стоком	3,0 B	М	SOT-23	3000 шт. / катушка
GM5510N-3.08ST23RG (MIK5510N-3.08ST23RG)	Канал N-типа с от- крытым стоком	3,08 B	N	SOT-23	3000 шт. / катушка
GM5510N-3.3ST23RG (MIK5510N-3.3ST23RG)	Канал N-типа с от- крытым стоком	3,3 B	Р	SOT-23	3000 шт. / катушка
GM5510N-3.6ST23RG (MIK5510N-3.6ST23RG)	Канал N-типа с от- крытым стоком	3,6 B	R	SOT-23	3000 шт. / катушка
GM5510N-4.0ST23RG (MIK5510N-4.0ST23RG)	Канал N-типа с от- крытым стоком	4,0 B	S	SOT-23	3000 шт. / катушка
GM5510N-4.1ST23RG (MIK5510N-4.1ST23RG)	Канал N-типа с от- крытым стоком	4,1 B	Т	SOT-23	3000 шт. / катушка
GM5510N-4.2ST23RG (MIK5510N-4.2ST23RG)	Канал N-типа с от- крытым стоком	4,2 B	U	SOT-23	3000 шт. / катушка
GM5510N-4.5ST23RG (MIK5510N-4.5ST23RG)	Канал N-типа с от- крытым стоком	4,5 B	W	SOT-23	3000 шт. / катушка

Датчик

напряжения

1,8 B

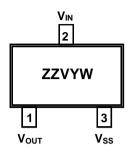
Индекс напря-

жения (V)

Е

Корпус

SOT-23


Форма поставки

3000 шт. / катушка

Изм	Лист	№ докум.	Подп.	Дата

Информация по маркировке и конфигурации выводов (вид сверху)

SOT-23-3

ZZ – код микросхемы:

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

GA – GM5510N (MIK5510N), Канал N-типа с открытым стоком;

GB - GM5510C (MIK5510C), KMOΠ;

V – код напряжения микросхемы;

Ү – код года изготовления микросхемы;

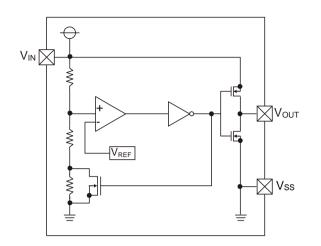
W – код недели изготовления микросхемы.

Предельно допустимые значения параметров

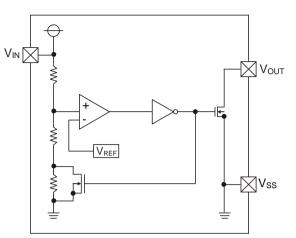
Пара	метр	Обозначение	Значение	Единица измерения
Входное напряжение		Vin	12	В
Выходной ток		I _{OUT}	50	мА
Выходное напряжение КМОП Канал N-типа с открытым стоком			От V _{SS} – 0,3 до V _{IN} + 0,3	
		V _{OUT}	От Vss – 0,3 до 12	В
Рассеяние мощ- ности	· 1 SO1-23-3		150	мВт
Рабочая температура окружающего воздуха		TA	– 40 до 85	°C
Температура хранения		T _{STG}	– 65 до 125	°C
Температура выво течение 10 сек.)	дов (пайка в	TsoL	260	°C

Изм	Лист	№ докум.	Подп.	Дата

Блок-схема


Подп. и дата

Инв. № дубл.


Взам. инв. №

Подп. и дата

(1) Выход: КМОП

(2) Выход: Канал N-типа с открытым стоком

Электрические характеристики ($V_{DF(T)} =$ ot 1,6 до 6,0 В \pm 2 %)

Параметр	Обозначение	Усло	ВИЯ	Мин.	Тип.	Макс.	∟д. ИЗМ.	Схема
Напряжение детектирова- ния	V_{DF}		-	V _{DF} x 0,98	V_{DF}	V _{DF} x 1,02	В	1
Диапазон гистерезиса	V _{HYS}	-	-	V _{DF} x 0,02	V _{DF} x 0,05	V _{DF} x 0,08	В	1
		V _{IN} = 1,5 B		-	0,7	2,3		
		V _{IN} = 2,0 B		-	0,8	2,7		
Ток	I _{SS}	V _{IN} = 3,0 B		-	0,9	3,0	мкА	2
потребления		V _{IN} = 4,0 B		-	1,0	3,2		
		V _{IN} = 5,0 B		-	1,1	3,6		
Рабочее напряжение	V _{IN}	$V_{DF(T)} = 1,6 I$	З до 6,0 B	0,7	-	10,0	В	1
	Іоит	Nch V _{DS} = 5 B	V _{IN} = 1,0 B	1,0	2,2	-	мА	3
			$V_{IN} = 2.0 B$	3,0	7,7	-		
			$V_{IN} = 3.0 \text{ B}$	5,0	10,1	-		
Выходной ток			V _{IN} = 4,0 B	6,0	11,5	-		
			V _{IN} = 5,0B	7,0	13,0	-		
		Pch V _{DS} = 2,1 B	V _{IN} = 8,0 B	- 10	- 2,0	-		
Температурные	ΔV_{DF}	– 40 °C ≤ T	OPR ≤ 85 °C	_	± 100	_	ppm/°C	5
характеристики	$\Delta T_{OPR} x V_{DF}$			_	± 100	_	ррии С)
Время задержки (V _{DR} → V _{OUT} инверсия)	t _{DLY}		-	-	-	0,2	МС	5

П р и м е ч а н и е: $V_{DF(T)}$ – Установленное значение датчика напряжения. Выключающее напряжение: V_{DR} = V_{DF} + V_{HYS}

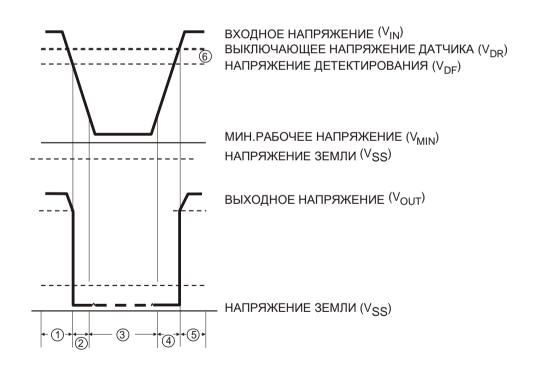
Изм	Лист	№ докум.	Подп.	Дата

Функциональное описание – Конфигурация с КМОП-выходом

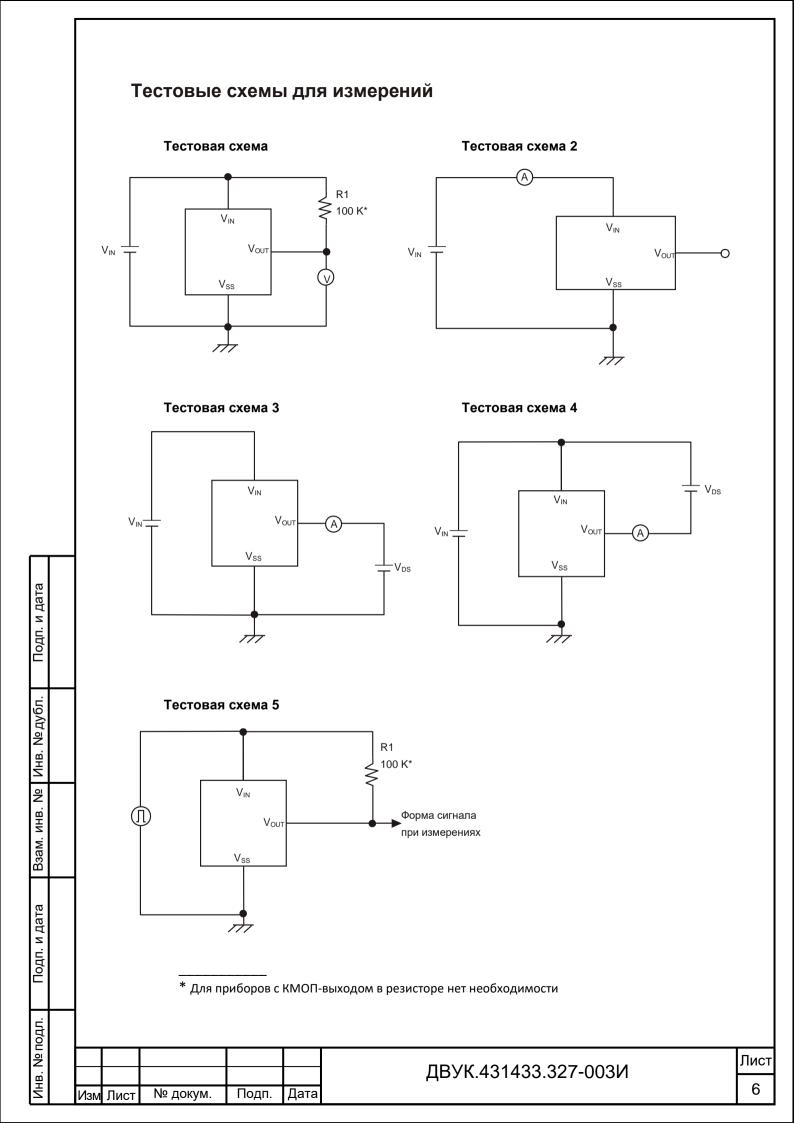
- \bigcirc При падении входного напряжения (V_{IN}) ниже установленного значения датчика напряжения (V_{DF}), выходное напряжение (V_{OUT}) будет равно уровню напряжения земли (V_{SS}).
- ③ При падении входного напряжения (V_{IN}) до уровня ниже минимального рабочего напряжения (V_{MIN}), выход становится нестабильным. В этом режиме V_{IN} сравняется с поднятым выходным напряжением (если выполняется поднятие выходного напряжения).
- A Когда входное напряжение (V_{IN}) превышает уровень напряжения земли (V_{SS}), выход становится нестабильным на уровнях ниже минимального рабочего напряжения (V_{MIN}). Между V_{MIN} и выключающим напряжением датчика (V_{DR}), будет поддерживаться уровень напряжения земли (V_{SS}).
- ⑤ Когда входное напряжение (V_{IN}) превышает выключающее напряжение датчика (V_{DR}), выходное напряжение (V_{OUT}) будет равно V_{IN} (в конфигурациях выхода «Канал N-типа с открытым стоком» имеется высокоимпедансный режим).
- ⑥ Разница между V_{DR} и V_{DF} представляет собой диапазон гистерезиса.

Временная диаграмма

Тодп. и дата


Инв. № дубл.

읟


NHB.

Взам.

Тодп. и дата

Изм	Лист	№ докум.	Подп.	Дата		

- 1. Для данной ИС рекомендуется использование исключительно в диапазоне заявленных предельных значений. Эксплуатация в условиях, выходящих за указанные пределы, может нанести вред или привести к необратимому повреждению устройства.
- 2. При использовании резистора между выводом V_{IN} и входом при конфигурации выхода с КМОП могут возникать колебания в результате падений напряжения на R_{IN} , если присутствует ток нагрузки (I_{OUT}). См. описание колебаний (1) ниже.
- 3. При использовании резистора между выводом V_{IN} и входом при конфигурации выхода с КМОП вне зависимости от конфигураций выхода N-канала могут возникать колебания в результате прохождения сквозного тока в момент отпускания напряжения даже при отсутствии тока нагрузки (I_{OUT}). См. описание колебаний (2) ниже
- 4. При использовании резистора между выводом V_{IN} и входом напряжение датчика и выключающее напряжение возрастут в результате прохождения тока питания ИС через вывод V_{IN}.
- 5. Для обеспечения стабильной работы ИС рекомендуется обеспечить время подъёма и падения частоты входного сигнала на выводе V_{IN} более нескольких мксек/В.
- 6. Рекомендуется использовать конфигурацию с каналом N-типа с открытым стоком, если резистор R_{IN} подключён между выводом V_{IN} и источником питания. В таком случае также необходимо удостовериться, что резистор R_{IN} ниже 10 кОм и значение С выше 0,1 мкФ.

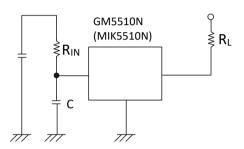


Рисунок 1 – Схема с использованием резистора на входе

Описание колебаний

Подп.

№дубл

ZHB.

읟

NHB.

Взам.

дат

Тодп. и

(1) Колебания выходного тока в конфигурации выхода с КМОП

При подаче напряжения на подъёмах IN запускаются операции отпускания напряжения и выходное напряжение датчика возрастает. Ток нагрузки (I_{OUT}) будет проходить на R_L . Поскольку падение напряжения (R_{IN} х I_{OUT}) возникает на R_{IN} -резисторе, расположенном между входом (IN) и выводом V_{IN} , ток нагрузки будет течь через V_{IN} -вывод ИС. Падение напряжения также приведёт к снижению уровня напряжения на V_{IN} -выводе. При падении уровня напряжения на V_{IN} -выводе ниже установленного уровня напряжения датчика запускаются функции датчика. В результате его работы будет отключён ток нагрузки и, поскольку спад напряжения на R_{IN} прекратится, уровень напряжения на V_{IN} — выводе возрастёт, и снова будут запущены функции отпускания. Колебания могут продолжаться такими повторами "отпускание — обнаружение — отпускание".

Этот режим также запускается посредством подобного механизма во время операций обнаружения.

(2) Колебания, возникающие в связи со сквозным током

Поскольку серия микросхем GM5510 (МIK5510) представляет собой ИС с КМОП, сквозной ток будет течь во время коммутаций внутренней цепи ИС (во время операций отпускания и обнаружения). В этой связи колебания возникают в результате падений напряжения на резисторе сквозного тока (R_{IN}) во время операций отпускания напряжения (см. Рисунок 3). Поскольку во время операций обнаружения имеет место гистерезис, возникновение колебаний маловероятно.

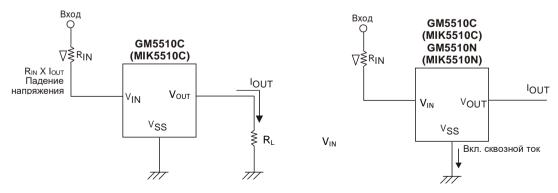
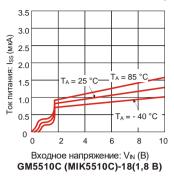
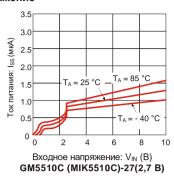
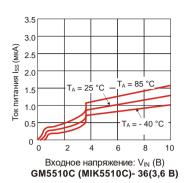


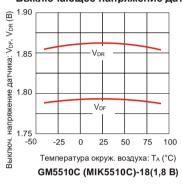
Рисунок 2 – Колебания относительно выходного тока

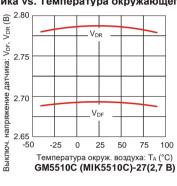

Рисунок 3 – Колебания относительно сквозного тока

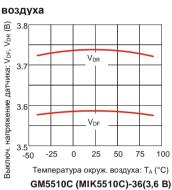

Изм	Лист	№ докум.	Подп.	Дата		

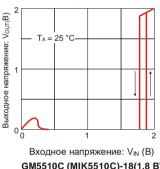

ДВУК.431433.327-003И

ТИПОВЫЕ РАБОЧИЕ ХАРАКТЕРИСТИКИ


Ток питания vs. Входное напряжение





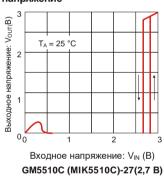

Выключающее напряжение датчика vs. Температура окружающего. воздуха

Выходное напряжение vs. Входное напряжение

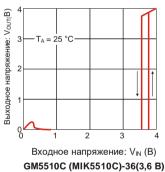
Тодп. и дата

Инв. № дубл.

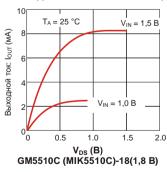
읟

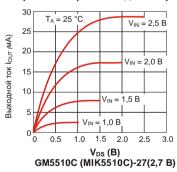

NHB.

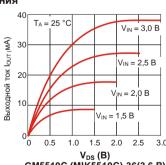
Взам.

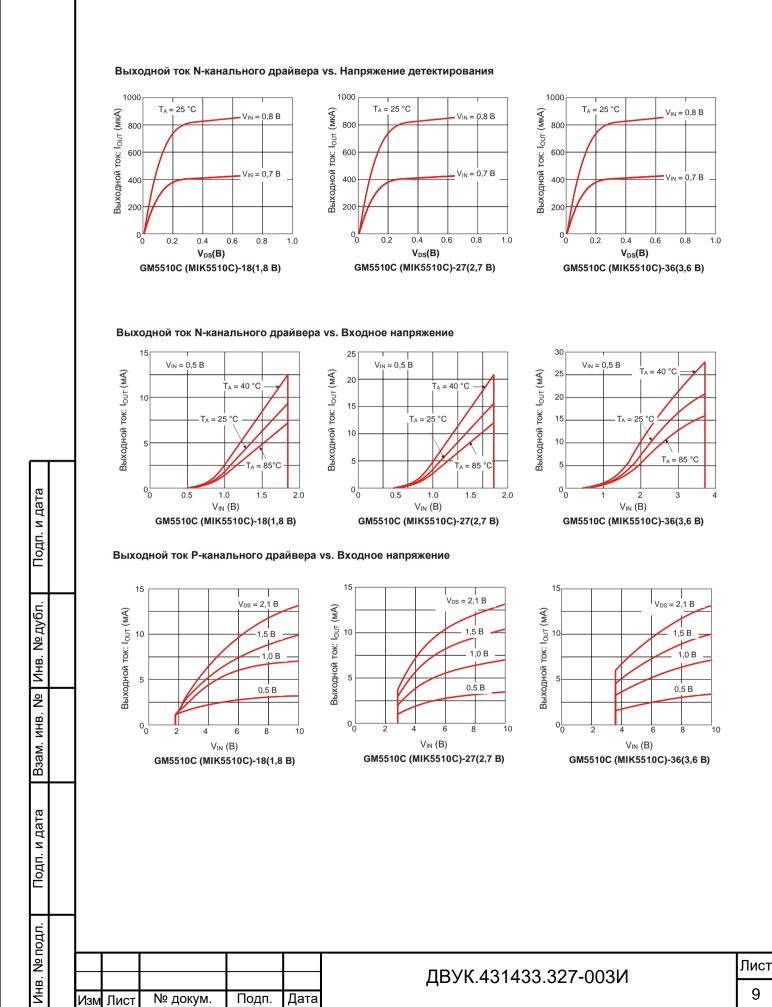

Тодп. и дата

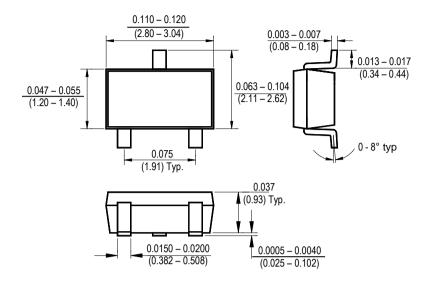
Инв. № подл








Выходной ток N-канального драйвера vs. Напряжение детектирования



V_{DS} (B) GM5510C (MIK5510C)-36(3,6 B)

Габариты корпуса – SOT 23-3

Информация для заказа

GM 5510

<u>C</u>

ST23

<u>R</u>

<u>G</u>

Маркировка

Тип м/сх

Конфигурация выхода

Тип корпуса

Форма поставки G: Экологически чистый продукт

GM

С: КМОП

ST23: SOT-23-3

R: лента & рулон

MIK

Подп. и дата

Инв. № дубл.

Взам. инв. №

Тодп. и дата

Инв. № подл.

N: Канал Nтипа с открытым стоком

Примечание:

Экологически чистый продукт:

- Не содержит свинца (в соответствии с директивой RoHS);
- ◆ Не содержит галоген (содержание Br или Cl не превышает 900 ppm по весу в однородном материале, общее содержание Br и Cl не превышает 1500 ppm по весу).

Изм	Лист	№ докум.	Подп.	Дата

ДВУК.431433.327-003И

Лист

Лист регистрации изменений Номера листов (страниц) Входящий Всего номер со-Номер листов Изм. проводи-Подпись Дата документа (страниц) в аннулиро-ванных изменензаменентельного новых документе ных ных документа Подп. и дата Инв. № дубл. Взам. инв. № Подп. и дата Инв. № подл. Лист ДВУК.431433.327-003И 11 № докум. Подп. Дата Изм Лист